Popis: |
A numerical model for liquid jet atomization in a subsonic gas cross flow has been developed and incorporated into a CFD code. The model is designed primarily for the shear breakup regime, which is appropriate for many fuel injection applications. The model considers Weber number and momentum flux ratio ranges that are dominated by either jet surface breakup or column breakup. A boundary layer stripping model has been modified to account for both shearing from the column and shear primary breakup of large drops. Further secondary breakup was modeled with the Rayleigh-Taylor model. The effect of drop distortion on the drag is also considered. Results of the model have been compared with experimental data for jet-A liquid jets in air cross flows with varying pressure, air velocity, and liquid-to-gas momentum flux ratio. Comparisons were made for drop volume flux and drop size as a function of distance from the injector wall. Trends were captured for liquid penetration associated with varying momentum flux ratio, and for drop size as a function distance from the wall. In general, agreement between measurements and CFD predictions were quite good. Areas of disagreement could be reasonably explained by the model’s inherent inability to capture the wake flow behind the liquid column.Copyright © 2004 by ASME |