Popis: |
Publisher Summary Membrane proteins have become an important focus of the current efforts in structural and functional genomics and the rapid progress of various genome sequencing projects has greatly accelerated the discovery of novel genes encoding membrane proteins. In contrast, the molecular analysis of membrane proteins lags far behind that of cytosolic soluble proteins. Preparing high quality samples of functionally folded proteins represents a major bottleneck that restricts further structural and functional studies. Cell-free protein expression systems, in particular those of eukaryotic origin, have recently been developed as promising tools for the rapid and efficient production of a wide variety of membrane proteins. A large number of these proteins, however, require posttranslational modifications for optimum function. Several membrane proteins have been expressed in vivo to date, most of them being functionally, antigenically, and immunogenically similar to their authentic counterparts. This is mainly because of the properties of cultured eukaryotic cells, which are able to carry out many types of posttranslational modifications, such as the addition of N- and O-linked oligosaccharides, but also palmitoylation, myristylation, and phosphorylation. |