On Hamiltonian formulations of theC1(m,a,b)equations
Autor: | Philip Rosenau, Alon Zilburg |
---|---|
Rok vydání: | 2017 |
Předmět: |
Physics
Conservation law 010102 general mathematics General Physics and Astronomy 01 natural sciences 010101 applied mathematics symbols.namesake Nonlinear system Third order symbols 0101 mathematics Hamiltonian (quantum mechanics) Nonlinear Sciences::Pattern Formation and Solitons Lagrangian Mathematical physics |
Zdroj: | Physics Letters A. 381:1557-1562 |
ISSN: | 0375-9601 |
DOI: | 10.1016/j.physleta.2017.03.009 |
Popis: | In this letter we re-address a class of genuinely nonlinear third order dispersive equations; C 1 ( m , a , b ) : u t + ( u m ) x + 1 b [ u a ( u b ) x x ] x = 0 , which among other solitary structures admit compactons, and demonstrate that certain subclasses of these equations may be cast into Hamiltonian and Lagrangian formulations resulting in new conservation laws, some of which are nonlocal. In particular, the new nonlocal conservation law of the K ( n , n ) equations enables us to prove that the response to a certain class of excitations cannot contain only compactons. |
Databáze: | OpenAIRE |
Externí odkaz: |