Autor: |
Tanjee Afreen, Tannaz Tayyarian, Omar Rodríguez-Uicab, Jandro L. Abot |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
American Society for Composites 2021. |
DOI: |
10.12783/asc36/35900 |
Popis: |
Thermoresistive characterization of CNTY monofilament composites was investigated by using the electrical response of a single carbon nanotube yarn (CNTY) embedded in a silicone polymer forming monofilament composites. Two room temperature vulcanizing (RTV) silicone rubbers with different polymerization mechanisms (OOMOO and Ecoflex) were used as the polymeric matrices. Continuous heating-cooling thermal cycling ranging from room temperature (RT~25 °C) to 80 °C was performed in order to determine the thermoresistive sensitivity, hysteresis and residual fractional change in electrical resistance after each cycle. The thermoresistive response was nearly linear, with negative temperature coefficient of resistance at the heating and cooling zones for CNTY/ OOMOO and CNTY/Ecoflex specimens. The average value of this coefficient at the heating and cooling sections was - 6.65×10-4 °C-1 for CNTY/OOMOO and -7.35×10-4 °C-1 for CNTY/Ecoflex. Both monofilament composites showed a negligible negative residual electrical resistance with an average value of ~ -0.08% for CNTY/OOMOO and ~ -0.20% for CNTY/Ecoflex after each cycle. The hysteresis yielded ~19.3% for CNTY/OOMOO and ~29.2% in CNTY/Ecoflex after each cycle. Therefore, the curing kinetics and viscosity play a paramount role in the electrical response of the CNTY immersed into these rubbery matrices. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|