Convolution operators on spaces of entire functions
Autor: | Vinícius V. Fávaro, Jorge Mujica |
---|---|
Rok vydání: | 2017 |
Předmět: |
Discrete mathematics
General Mathematics Entire function 010102 general mathematics Nuclear space Convolution power 01 natural sciences Circular convolution Convolution 010101 applied mathematics Locally convex topological vector space 0101 mathematics Convolution theorem Normed vector space Mathematics |
Zdroj: | Mathematische Nachrichten. 291:41-54 |
ISSN: | 0025-584X |
DOI: | 10.1002/mana.201600247 |
Popis: | We show that nontrivial convolution operators on certain spaces of entire functions on E are frequently hypercyclic when E is a normed space and when E is the strong dual of a Frechet nuclear space. We also obtain results of existence and approximation for convolution equations on certain spaces of entire functions on arbitrary locally convex spaces. |
Databáze: | OpenAIRE |
Externí odkaz: |