Investigation of cascade-induced re-solution from nanometer sized coherent precipitates in dilute Fe–Cu alloys

Autor: Brian D. Wirth, Todd R. Allen, H.-J. Lee Voigt, Alicia G. Certain
Rok vydání: 2013
Předmět:
Zdroj: Journal of Nuclear Materials. 432:281-286
ISSN: 0022-3115
DOI: 10.1016/j.jnucmat.2012.08.014
Popis: Molecular dynamics (MD) simulations have been used to investigate the re-solution of copper atoms from coherent, nanometer-sized copper precipitates in a body-centered cubic iron matrix. The molecular dynamics simulations used Finnis–Sinclair type interatomic potentials to describe the Fe–Cu system. Precipitate diameters of 1, 3 and 5 nm were studied, with primary knock-on atom (PKA) from 1 to 100 keV, although the majority of the cascade simulations and analysis of solute re-solution were performed for cascades of 10 or 20 keV. The simulation results provide an assessment of the re-solution on a per-atom basis as a function of precipitate size, cascade location and energy. Smaller sized precipitates, with a larger surface to volume ratio, experienced larger re-solution on a per-atom basis than larger precipitates. Re-solution was observed to occur predominantly in the initial ballistic stages of the cascades when atomic collisions occur at high kinetic energy. A minimum PKA energy of around 1 keV was required to produce re-solution, and the amount of re-solution appears to saturate for PKA energies above approximately 10 keV, indicating that the MD results are representative of the energy range of interest. A model for prompt, cascade induced solute atom re-solution has been derived, following the approach used to describe fission gas bubble re-solution, and the parameters for describing copper atom re-solution are provided.
Databáze: OpenAIRE