Recursive Least Squares Parameter Estimation for a Class of Output Nonlinear Systems Based on the Model Decomposition

Autor: Qijia Chen, Feng Ding, Xuehai Wang, Xiao Yongsong
Rok vydání: 2015
Předmět:
Zdroj: Circuits, Systems, and Signal Processing. 35:3323-3338
ISSN: 1531-5878
0278-081X
DOI: 10.1007/s00034-015-0190-6
Popis: In this paper, we study the parameter estimation problem of a class of output nonlinear systems and propose a recursive least squares (RLS) algorithm for estimating the parameters of the nonlinear systems based on the model decomposition. The proposed algorithm has lower computational cost than the existing over-parameterization model-based RLS algorithm. The simulation results indicate that the proposed algorithm can effectively estimate the parameters of the nonlinear systems.
Databáze: OpenAIRE