Control Points in Ecosystems: Moving Beyond the Hot Spot Hot Moment Concept
Autor: | E. C. Seybold, Megan L. Fork, Cari D. Ficken, Emily S. Bernhardt, K. E. Kaiser, Joanna R. Blaszczak |
---|---|
Rok vydání: | 2017 |
Předmět: |
Biogeochemical cycle
010504 meteorology & atmospheric sciences Ecology business.industry Aquatic ecosystem Scale (chemistry) Environmental resource management Biogeochemistry Hot spot (veterinary medicine) 04 agricultural and veterinary sciences 01 natural sciences 040103 agronomy & agriculture Ecosystem management Rare events 0401 agriculture forestry and fisheries Environmental Chemistry Environmental science Ecosystem business Ecology Evolution Behavior and Systematics 0105 earth and related environmental sciences |
Zdroj: | Ecosystems. 20:665-682 |
ISSN: | 1435-0629 1432-9840 |
Popis: | The phrase “hot spots and hot moments” first entered the lexicon in 2003, following the publication of the paper “Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems” by McClain and others (Ecosystems 6:301–312, 2003). This paper described the potential for rare places and rare events to exert a disproportionate influence on the movement of elements at the scale of landscapes and ecosystems. Here, we examine how the cleverly named hot spot and hot moment concept (hereafter HSHM) has influenced biogeochemistry and ecosystem science over the last 13 years. We specifically examined the extent to which the HSHM concept has: (1) motivated research aimed at understanding how and why biogeochemical behavior varies across spatiotemporal scales; (2) improved our ability to detect HSHM phenomena; and (3) influenced our approaches to restoration and ecosystem management practices. We found that the HSHM concept has provided a highly fertile framework for a substantial volume of research on the spatial and temporal dynamics of nutrient cycling, and in doing so, has improved our understanding of when and where biogeochemical rates are maximized. Despite the high usage of the term, we found limited examples of rigorous statistical or modeling approaches that would allow ecosystem scientists to not only identify, but scale the aggregate impact of HSHM on ecosystem processes. We propose that the phrase “hot spots and hot moments” includes two implicit assumptions that may actually be limiting progress in applying the concept. First, by differentiating “hot spots” from “hot moments,” the phrase separates the spatial and temporal components of biogeochemical behavior. Instead, we argue that the temporal dynamics of a putative hot spot are a fundamental trait that should be used in their description. Second, the adjective “hot” implicitly suggests that a place or a time must be dichotomously classified as “hot or not.” We suggest instead that each landscape of interest contains a wide range of biogeochemical process rates that respond to critical drivers, and the gradations of this biogeochemical topography are of greater interest than the maximum peaks. For these reasons, we recommend replacing the HSHM terminology with the more nuanced term ecosystem control points. “Ecosystem control” suggests that the rate must be of sufficient magnitude or ubiquity to affect dynamics of the ecosystem, while “points” allows for descriptions that simultaneously incorporate both spatial and temporal dynamics. We further suggest that there are at least four distinct types of ecosystem control points whose influence arises through distinct hydrologic and biogeochemical mechanisms. Our goal is to provide the tools with which researchers can develop testable hypotheses regarding the spatiotemporal dynamics of biogeochemistry that will stimulate advances in more accurately identifying, modeling and scaling biogeochemical heterogeneity to better understand ecosystem processes. |
Databáze: | OpenAIRE |
Externí odkaz: |