Performance prediction of a two-bed solar adsorption chiller with adaptive cycle time using a MIL-100(Fe)/water working pair – influence of solar collector configuration
Autor: | Syed A.M. Said, Najam ul Qadir, Rached Ben Mansour |
---|---|
Rok vydání: | 2018 |
Předmět: |
Chiller
Materials science Computer simulation 020209 energy Mechanical Engineering Nuclear engineering Thermodynamics 02 engineering and technology Building and Construction Coefficient of performance 021001 nanoscience & nanotechnology Refrigerant Adsorption 0202 electrical engineering electronic engineering information engineering Performance prediction 0210 nano-technology Condenser (heat transfer) Evaporator |
Zdroj: | International Journal of Refrigeration. 85:472-488 |
ISSN: | 0140-7007 |
Popis: | The simulation studies of conventional small-scale adsorption chillers reported so far in literature incorporate a pre-determined user-defined cycle time which remains constant with the increasing number of cycles. This study presents the first attempt of the numerical simulation of a two-bed solar adsorption chiller with “adaptive” cycle time based on the temporal variations of temperatures and pressures existing inside the beds, the evaporator and the condenser. A water-stable metal organic framework (MOF), MIL-100(Fe), has been selected as the adsorbent while water has been chosen as the refrigerant. A flat-plate solar collector with three different glaze configurations, namely single-glazed (S-G), double-glazed (D-G) and single-glazed with transparent insulation material (TIM), has been employed. The performance of the two-bed adsorption chiller has been evaluated in terms of the variations of the specific cooling power (SCP), the coefficient of performance (COP) and the solar coefficient of performance (COPsc) with increasing number of cycles. |
Databáze: | OpenAIRE |
Externí odkaz: |