Met-Like Categories Amongst Concrete Topological Categories
Autor: | Walter Tholen |
---|---|
Rok vydání: | 2018 |
Předmět: |
Lens (geometry)
Algebra and Number Theory General Computer Science 010102 general mathematics Quantale 02 engineering and technology Topology 01 natural sciences Theoretical Computer Science Topological category Theory of computation Metric (mathematics) 0202 electrical engineering electronic engineering information engineering 020201 artificial intelligence & image processing 0101 mathematics Commutative property Mathematics Real number |
Zdroj: | Applied Categorical Structures. 26:1095-1111 |
ISSN: | 1572-9095 0927-2852 |
DOI: | 10.1007/s10485-018-9513-7 |
Popis: | When replacing the non-negative real numbers with their addition by a commutative quantale $$\mathsf{V}$$ , under a metric lens one may then view small $$\mathsf{V}$$ -categories as sets that come with a $$\mathsf{V}$$ -valued distance function. The ensuing category $$\mathsf{V}\text {-}\mathbf{Cat}$$ is well known to be a concrete topological category that is symmetric monoidal closed. In this paper we show which concrete symmetric monoidal-closed topological categories may be fully and bireflectively embedded into $$\mathsf{V}\text {-}\mathbf{Cat}$$ , for some $$\mathsf{V}$$ . |
Databáze: | OpenAIRE |
Externí odkaz: |