On spectral and fractional powers of damped wave equations

Autor: Maykel Belluzi, Flank D. M. Bezerra, Marcelo J. D. Nascimento
Rok vydání: 2022
Předmět:
Zdroj: Communications on Pure and Applied Analysis. 21:2739
ISSN: 1553-5258
1534-0392
DOI: 10.3934/cpaa.2022071
Popis: In this paper we explore the theory of fractional powers of positive operators, more precisely, we use the Balakrishnan formula to obtain parabolic approximations of (damped) wave equations in bounded smooth domains in \begin{document}$ \mathbb{R}^N $\end{document}. We also explicitly calculate the fractional powers of wave operators in terms of the fractional Laplacian in bounded smooth domains and characterize the spectrum of these operators.
Databáze: OpenAIRE