On spectral and fractional powers of damped wave equations
Autor: | Maykel Belluzi, Flank D. M. Bezerra, Marcelo J. D. Nascimento |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Communications on Pure and Applied Analysis. 21:2739 |
ISSN: | 1553-5258 1534-0392 |
DOI: | 10.3934/cpaa.2022071 |
Popis: | In this paper we explore the theory of fractional powers of positive operators, more precisely, we use the Balakrishnan formula to obtain parabolic approximations of (damped) wave equations in bounded smooth domains in \begin{document}$ \mathbb{R}^N $\end{document}. We also explicitly calculate the fractional powers of wave operators in terms of the fractional Laplacian in bounded smooth domains and characterize the spectrum of these operators. |
Databáze: | OpenAIRE |
Externí odkaz: |