The full group of automorphisms of non-orientable unbordered Klein surfaces of topological genus 6
Autor: | Adrián Bacelo |
---|---|
Rok vydání: | 2017 |
Předmět: |
Algebra and Number Theory
Group (mathematics) Klein four-group Automorphisms of the symmetric and alternating groups Applied Mathematics 010102 general mathematics Klein quartic Outer automorphism group Alternating group Automorphism Topology 01 natural sciences Combinatorics Computational Mathematics Mathematics::Algebraic Geometry Genus (mathematics) 0103 physical sciences 010307 mathematical physics Geometry and Topology 0101 mathematics Analysis Mathematics |
Zdroj: | Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas. 112:391-405 |
ISSN: | 1579-1505 1578-7303 |
DOI: | 10.1007/s13398-017-0387-6 |
Popis: | An important problem in the study of Riemann and Klein surfaces is determining their full automorphism groups. Up to now only very partial results are known, concerning surfaces of low genus or families of surfaces with special properties. This paper deals with non-orientable unbordered Klein surfaces. In this case the solution of the problem is known for surfaces of genus 1, 2, 3, 4 and 5, and for hyperelliptic surfaces. Here we explicitly obtain the full automorphism group of all surfaces of genus 6. |
Databáze: | OpenAIRE |
Externí odkaz: |