Low-Temperature Densification Sintering and Properties of Monoclinic-SrAl2Si2O8 Ceramics
Autor: | Degui Zhu, Song Chen, Xu-Sheng Cai |
---|---|
Rok vydání: | 2014 |
Předmět: | |
Zdroj: | Metallurgical and Materials Transactions A. 45:3995-4001 |
ISSN: | 1543-1940 1073-5623 |
DOI: | 10.1007/s11661-014-2344-8 |
Popis: | The dense monoclinic-SrAl2Si2O8 ceramics have been prepared by a two-step sintering process at a sintering temperature of 1173 K (900 °C). Firstly, the pre-sintered monoclinic-SrAl2Si2O8 powders containing small SiO2·Al2O3 crystal phases were obtained by continuously sintering a powder mixture of SrCO3 and kaolin at 1223 K (950 °C) for 6 hours and 1673 K (1400 °C) for 4 hours, respectively. Subsequently, by the combination of the pre-sintered ceramic powders with the composite flux agents, which are composed of a SrO·3B2O3 flux agent and α-Al2O3, the low-temperature densification sintering of the monoclinic-SrAl2Si2O8 ceramics was accomplished at 1173 K (900 °C). The low-temperature sintering behavior and microstructure evolvement of the monoclinic-SrAl2Si2O8 ceramics have been investigated in terms of Al2O3 in addition to the composite flux agents. It shows that due to the low-meting characteristics, the SrO·3B2O3 flux agent can urge the dense microstructure formation of the monoclinic-SrAl2Si2O8 ceramics and the re-crystallization of the grains via a liquid-phase sintering. The introduction of α-Al2O3 to the SrO·3B2O3 flux agent can apparently lead to more dense microstructures for the monoclinic-SrAl2Si2O8 ceramics but also cause the re-precipitation of SiO2·Al2O3 compounds because of an excessive Al2O3 content in the SrO·3B2O3 flux agent. |
Databáze: | OpenAIRE |
Externí odkaz: |