Infoveillance based on Social Sensors to Analyze the impact of Covid19 in South American Population (Preprint)

Autor: Josimar Chire
Rok vydání: 2020
ISSN: 2005-5749
DOI: 10.2196/preprints.19337
Popis: BACKGROUND Infoveillance is an application from Infodemiology field with the aim to monitor public health and create public policies. Social sensor is the people providing thought, ideas through electronic communication channels(i.e. Internet). The actual scenario is related to tackle the covid19 impact over the world, many countries have the infrastructure, scientists to help the growth and countries took actions to decrease the impact. South American countries have a different context about Economy, Health and Research, so Infoveillance can be a useful tool to monitor and improve the decisions and be more strategical. The motivation of this work is analyze the capital of Spanish Speakers Countries in South America using a Text Mining Approach with Twitter as data source. The preliminary results helps to understand what happens two weeks ago and opens the analysis from different perspectives i.e. Economics, Social. OBJECTIVE Analyze the behaviour of South American Capitals in front of covid19 pandemics and show the helpfulness of Text Mining Approach for Infoveillance tasks. METHODS Text Mining process RESULTS - Argentina and Venezuela capitals are the biggest number of post during this period, opposite with Bolivia, Ecuador and Uruguay. - Most relevant users are related to mass media like radio, television or newspapers. - There is a general concern about covid19 but every country talks about different areas: Economics, Health, Environmental Impact. CONCLUSIONS Infoveillance based on Social Sensors with data coming from Twitter can help to understand the trends on the population of the capitals. Besides, it is necessary to filter the posts for processing the text and get insights about frequency, top users, most important terms. This data is useful to analyse the population from different approaches. INTERNATIONAL REGISTERED REPORT RR2-https://doi.org/10.1101/2020.04.06.20055749
Databáze: OpenAIRE