A multi-enhancer RET regulatory code is disrupted in Hirschsprung disease
Autor: | Sumantra Chatterjee, Aravinda Chakravarti, Kameko M. Karasaki, Lauren E. Fries, Ashish Kapoor |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Genome Research. 31:2199-2208 |
ISSN: | 1549-5469 1088-9051 |
DOI: | 10.1101/gr.275667.121 |
Popis: | The major genetic risk factors for Hirschsprung disease (HSCR) are three common polymorphisms within cis-regulatory elements (CREs) of the receptor tyrosine kinase gene RET, which reduce its expression during enteric nervous system (ENS) development. These risk variants attenuate binding of the transcription factors RARB, GATA2, and SOX10 to their cognate CREs, reduce RET gene expression, and dysregulate other ENS and HSCR genes in the RET–EDNRB gene regulatory network (GRN). Here, we use siRNA, ChIP, and CRISPR-Cas9 deletion analyses in the SK-N-SH cell line to ask how many additional HSCR-associated risk variants reside in RET CREs that affect its gene expression. We identify 22 HSCR-associated variants in candidate RET CREs, of which seven have differential allele-specific in vitro enhancer activity, and four of these seven affect RET gene expression; of these, two enhancers are bound by the transcription factor PAX3. We also show that deleting multiple variant-containing enhancers leads to synergistic effects on RET gene expression. These, coupled with our prior results, show that common sequence variants in at least 10 RET enhancers affect HSCR risk, seven with experimental evidence of affecting RET gene expression, extending the known RET–EDNRB GRN to reveal an extensive regulatory code modulating disease risk at a single gene. |
Databáze: | OpenAIRE |
Externí odkaz: |