On $C^1$-persistently expansive homoclinic classes
Autor: | José L. Vieitez, Martín Sambarino |
---|---|
Rok vydání: | 2006 |
Předmět: | |
Zdroj: | Discrete & Continuous Dynamical Systems - A. 14:465-481 |
ISSN: | 1553-5231 |
DOI: | 10.3934/dcds.2006.14.465 |
Popis: | Let $f: M \to M$ be a diffeomorphism defined in a $d$-dimensional compact boundary-less manifold $M$. We prove that $C^1$-persistently expansive homoclinic classes $H(p)$, $p$ an $f$-hyperbolic periodic point, have a dominated splitting $E\oplus F$, $\dim(E)=\mbox{index}(p)$. Moreover, we prove that if the $H(p)$-germ of $f$ is expansive (in particular if $H(p)$ is an attractor, repeller or maximal invariant) then it is hyperbolic. |
Databáze: | OpenAIRE |
Externí odkaz: |