Combating False Negatives in Adversarial Imitation Learning (Student Abstract)

Autor: Chitwan Saharia, Leonard Boussioux, Konrad Żołna, Dzmitry Bahdanau, Maxime Chevalier-Boisvert, Yoshua Bengio, David Yu-Tung Hui
Rok vydání: 2020
Předmět:
Zdroj: AAAI
ISSN: 2374-3468
2159-5399
DOI: 10.1609/aaai.v34i10.7272
Popis: We define the False Negatives problem and show that it is a significant limitation in adversarial imitation learning. We propose a method that solves the problem by leveraging the nature of goal-conditioned tasks. The method, dubbed Fake Conditioning, is tested on instruction following tasks in BabyAI environments, where it improves sample efficiency over the baselines by at least an order of magnitude.
Databáze: OpenAIRE