Grinding burn limits: Generation of surface layer modification charts for discontinuous profile grinding with analogy trials
Autor: | Bernhard Karpuschewski, Nikolai Guba, Carsten Heinzel, Jonas Heinzel |
---|---|
Rok vydání: | 2020 |
Předmět: |
0209 industrial biotechnology
Work (thermodynamics) Materials science Process (computing) 02 engineering and technology Grinding wheel Mechanics Industrial and Manufacturing Engineering Grinding 020303 mechanical engineering & transports 020901 industrial engineering & automation 0203 mechanical engineering Thermal Surface grinding Surface layer Limit (mathematics) |
Zdroj: | CIRP Journal of Manufacturing Science and Technology. 31:99-107 |
ISSN: | 1755-5817 |
DOI: | 10.1016/j.cirpj.2020.09.014 |
Popis: | By means of surface layer modification charts, the occurrence of thermal impact and thus the risk of grinding burn can be detected. With the present work it was shown that surface layer modification charts for discontinuous profile grinding can be generated using analogy trials carried out on a surface grinding machine for investigation of different grinding conditions and varied tilt angles in profile grinding. The experimental and the analysis effort for the analogy trials prove to be significantly more time and cost saving. The results also suggest that system parameters such as the grinding wheel specification or the cooling strategy are taken into account by the specific grinding power. Thus, the experimental results of this work allow the assumption that the determined process limit is not or just to a low extent depending on the system parameters. This assumption is supported by the thermal process limit determined by Malkin and converted in surface layer modification charts. Malkin's limit, identified for different ground steels with surface and cylindrical grinding processes and thus different system and process parameters, corresponds to the results generated in this work at workpieces ground with a kinematically more complex process. The results reveal that there is at least a group of steel materials which seems to share a similar thermal process limit. |
Databáze: | OpenAIRE |
Externí odkaz: |