Noncommutative Localizations of Lie-Complete Rings

Autor: Anar Dosi
Rok vydání: 2016
Předmět:
Zdroj: Communications in Algebra. 44:4892-4944
ISSN: 1532-4125
0092-7872
DOI: 10.1080/00927872.2015.1130135
Popis: In this paper we investigate the topological localizations of Lie-complete rings. It has been proved that a topological localization of a Lie-complete ring is commutative modulo its topological nilradical. Based on the topological localizations we define a noncommutative affine scheme X = Spf(A) for a Lie-complete ring A. The main result of the paper asserts that the topological localization A(f) of A at f ∈ A is embedded into the ring 𝒪A(Xf) of all sections of the structure sheaf 𝒪A on the principal open set Xf as a dense subring with respect to the weak I1-adic topology, where I1 is the two-sided ideal generated by all commutators in A. The equality A(f) = 𝒪A(Xf) can only be achieved in the case of an NC-complete ring A.
Databáze: OpenAIRE