Sample geometry effects on incoherent small-angle scattering of light water

Autor: F. Carsughi, R. Plenteda, R. P. May, Jan Šaroun
Rok vydání: 2000
Předmět:
Zdroj: Journal of Applied Crystallography. 33:112-117
ISSN: 0021-8898
DOI: 10.1107/s0021889899013643
Popis: Light water is frequently used as a standard for calibrating small-angle neutron scattering (SANS) data. The intensities collected for 1 and 2 mm of light water in standard quartz cells may differ by up to about 50% due to the presence of multiple and inelastic scattering [Rennie & Heenan (1993).Proceedings of ISSI Meeting, Dubna,pp. 254–260, Report E3-93-65; Teixeira (1992).Structure and Dynamics of Strongly Interacting Colloids and Supramolecular Aggregates in Solution, edited by S. H. Chen, pp. 625–658. Dordrecht: Kluwer Academic Publishers]. Multiple scattering increases with the thickness of the sample. The use of only elastically scattered neutrons may lead to an absolute intensity of the SANS data of about a factor of 2 higher than that obtained by taking into account all of the neutrons on the detector [Ghosh & Rennie (1990).Inst. Phys. Conf. Ser.107, 233–244]. However, it is shown here that the scattering intensities collected with different ratios of sample-to-beam dimension do present large differences as a function of sample thickness. In particular, ratios smaller and larger than unity are considered and the results are discussed and compared with Monte Carlo simulations.
Databáze: OpenAIRE