Special forms and the distribution of practical numbers
Autor: | X.-H. Wu |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | Acta Mathematica Hungarica. 160:405-411 |
ISSN: | 1588-2632 0236-5294 |
DOI: | 10.1007/s10474-019-00978-7 |
Popis: | A positive integer n is called practical if every positive integer $$m \leq n$$ can be written as a sum of distinct divisors of n. For any integers $$a, b, k > 0$$, we show that if $$2 \nmid a$$, then there are infinitely many nonnegative integers m such that $$am^{k} + bm^{k-1}$$ is practical. Let qn denote the n-th practical number. Further, when $$n \geq 7$$, we prove that $$\sqrt{q_{n}+1} - \sqrt{q_n} < \frac{1}{2} $$ and there are at least two practical numbers between n2 and (n + 1)2. |
Databáze: | OpenAIRE |
Externí odkaz: |