First direct measurement of $^{59}$Cu(p,$��$)$^{56}$Ni: A step towards constraining the Ni-Cu cycle in the Cosmos

Autor: Randhawa, J. S., Kanungo, R., Refsgaard, J., Mohr, P., Ahn, T., Alcorta, M., Andreoiu, C., Bhattacharjee, S. S., Davids, B., Christian, G., Chen, A. A., Coleman, R., Garrett, P., Grinyer, G. F., Fuakye, E. Gyabeng, Hackman, G., Jain, R., Kapoor, K., Kr��cken, R., Laffoley, A., Lennarz, A., Liang, J., Meisel, Z., Nikhil, N., Psaltis, A., Radich, A., Rocchini, M., Saei, N., Saxena, M., Singh, M., Svensson, C., Subramaniam, P., Talebitaher, A., Upadhyayula, S., Waterfield, C., Williams, J., Williams, M.
Rok vydání: 2021
Předmět:
DOI: 10.48550/arxiv.2107.05606
Popis: Reactions on the proton-rich nuclides drive the nucleosynthesis in Core-Collapse Supernovae (CCSNe) and in X-ray bursts (XRBs). CCSNe eject the nucleosynthesis products to the interstellar medium and hence are a potential inventory of p-nuclei, whereas in XRBs nucleosynthesis powers the light curves. In both astrophysical sites the Ni-Cu cycle, which features a competition between $^{59}$Cu(p,$��$)$^{56}$Ni and $^{59}$Cu(p,$��$)$^{60}$Zn, could potentially halt the production of heavier elements. Here, we report the first direct measurement of $^{59}$Cu(p,$��$)$^{56}$Ni using a re-accelerated $^{59}$Cu beam and cryogenic solid hydrogen target. Our results show that the reaction proceeds predominantly to the ground state of $^{56}$Ni and the experimental rate has been found to be lower than Hauser-Feshbach-based statistical predictions. New results hint that the $��p$-process could operate at higher temperatures than previously inferred and therefore remains a viable site for synthesizing the heavier elements.
Databáze: OpenAIRE