Data mining in the oil industry

Jazyk: ruština
Rok vydání: 2021
Předmět:
DOI: 10.18720/spbpu/3/2021/vr/vr21-4664
Popis: Данная работа посвящена исследованию Ñ€Ð°Ð·Ð»Ð¸Ñ‡Ð½Ñ‹Ñ Ð¼ÐµÑ‚Ð¾Ð´Ð¾Ð² машинного обучения для ускорения интерпретации Ð´Ð°Ð½Ð½Ñ‹Ñ Ð³ÐµÐ¾Ñ„Ð¸Ð·Ð¸Ñ‡ÐµÑÐºÐ¸Ñ Ð¸ÑÑÐ»ÐµÐ´Ð¾Ð²Ð°Ð½Ð¸Ð¹ скважин (ГИС). Задачи, которые решались в Ñ Ð¾Ð´Ðµ исследования: 1. Выполнить обзор Ð°ÐºÑ‚ÑƒÐ°Ð»ÑŒÐ½Ñ‹Ñ Ð´Ð»Ñ исследования в выбранной области Ð»Ð¸Ñ‚ÐµÑ€Ð°Ñ‚ÑƒÑ€Ð½Ñ‹Ñ Ð¼Ð°Ñ‚ÐµÑ€Ð¸Ð°Ð»Ð¾Ð², включая статьи, учебные материалы и пособия. 2. Выполнить обзор задач в нефтяной промышленности, Ñ€ÐµÑˆÐ°ÐµÐ¼Ñ‹Ñ Ð¼ÐµÑ‚Ð¾Ð´Ð°Ð¼Ð¸ машинного обучения. 3. Провести анализ Ð¾ÑÐ½Ð¾Ð²Ð½Ñ‹Ñ Ð¼ÐµÑ‚Ð¾Ð´Ð¾Ð² интеллектуального анализа Ð´Ð°Ð½Ð½Ñ‹Ñ . 4. Построить модели мультиклассовой и бинарной классификации для интерпретации Ð´Ð°Ð½Ð½Ñ‹Ñ Ð“Ð˜Ð¡, применив различные алгоритмы анализа Ð´Ð°Ð½Ð½Ñ‹Ñ . 5. Выполнить анализ результатов применения методов классификации. Был проведен сравнительный анализ методов интеллектуального анализа для классификации Ð³Ð¾Ñ€Ð½Ñ‹Ñ Ð¿Ð¾Ñ€Ð¾Ð´ и коллекторов на основании Ð³ÐµÐ¾Ñ„Ð¸Ð·Ð¸Ñ‡ÐµÑÐºÐ¸Ñ Ð¸ÑÑÐ»ÐµÐ´Ð¾Ð²Ð°Ð½Ð¸Ð¹, Ð¿Ñ€Ð¾Ð²ÐµÐ´ÐµÐ½Ð½Ñ‹Ñ Ð² 20 ÑÐºÐ²Ð°Ð¶Ð¸Ð½Ð°Ñ Ð½Ð¾Ñ€Ð²ÐµÐ¶ÑÐºÐ¾Ð³Ð¾ шельфа. Работа проведена с помощью Ð²ÑÑ‚Ñ€Ð¾ÐµÐ½Ð½Ñ‹Ñ Ñ„ÑƒÐ½ÐºÑ†Ð¸Ð¹ библиотеки «sklearn» языка Python. По предварительно обработанным данным построено 6 моделей машинного обучения, Ð¾ÑÐ½Ð¾Ð²Ð°Ð½Ð½Ñ‹Ñ Ð½Ð° Ð°Ð»Ð³Ð¾Ñ€Ð¸Ñ‚Ð¼Ð°Ñ : наивный байесовский классификатор, методы Ð¾Ð¿Ð¾Ñ€Ð½Ñ‹Ñ Ð²ÐµÐºÑ‚Ð¾Ñ€Ð¾Ð², дерева решений, случайного леса, логистической регрессии и k-метода ближайшего соседа. В результате сравнения по точности предсказания и времени обучения моделей, наилучшие результаты показали методы логистической регрессии, дерева решений и случайного леса.
The subject of the graduate qualification work is «Data mining in the oil industry». The given work is devoted to the study of various machine learning methods to accelerate the interpretation of well logging data. The research set the following goals: 1. Review relevant literature materials for research in the chosen field, including articles, abstracts, educational materials and manuals. 2. Review of tasks in the oil industry, performed by machine learning methods. 3. Analyze the main methods of data mining. 4. Build multiclass and binary classification models for interpreting data using various data analysis algorithms. 5. Analyze the results of applying classification methods. A comparative analysis of mining methods was carried out for the classification of rocks and reservoirs based on well logging data of 20 the Norwegian shelf wells. The work was carried out using the built-in functions of the sklearn library of the Python language. Based on the processed data, 6 machine learning models were built: a naive Bayesian classifier, support vector machines, decision trees, a random forest, logistic regression, and the k-nearest neighbor method. As a result of comparison of the accuracy of prediction and training time of the models, the method of logistic regression, decision tree and random forest were determined by the optimal methods.
Databáze: OpenAIRE
načítá se...