The distribution and function of serotonin in the large milkweed bug, Oncopeltus fasciatus

Autor: Laura Miggiani, Victoria TeBrugge, Ian Orchard
Rok vydání: 1999
Předmět:
Zdroj: Journal of Insect Physiology. 45:1029-1036
ISSN: 0022-1910
DOI: 10.1016/s0022-1910(99)00087-6
Popis: The blood-feeding hemipteran, Rhodnius prolixus, ingests a large blood meal at the end of each larval stage. To accommodate and process this meal, its cuticle undergoes plasticisation, and its gut and Malpighian tubules respectively absorb and secrete a large volume of water and salts for rapid diuresis. Serotonin has been found to be integral to the feeding process in this animal, along with a diuretic peptide(s). The large milkweed bug, Oncopeltus fasciatus, tends to feed in a more continuous and abstemious manner, and therefore may have different physiological requirements than the blood feeder. Unlike R. prolixus, O. fasciatus is lacking serotonin-like immunoreactive dorsal unpaired median neurons in the mesothoracic ganglionic mass, and lacks serotonin-like immunoreactive neurohaemal areas and processes on the abdominal nerves, integument, salivary glands, and anterior junction of the foregut and crop. The salivary glands and crop do, however, respond to serotonin with increased levels of cAMP, while the integument and Malpighian tubules do not. In addition, O. fasciatus Malpighian tubules respond to both O. fasciatus and R. prolixus partially purified CNS extracts, which are likely to contain any native diuretic peptides. Thus, while serotonin and diuretic peptides may be involved in tubule control in R. prolixus, the latter may be of greater importance in O. fasciatus.
Databáze: OpenAIRE