Exponential decay for the semilinear wave equation with localized frictional and Kelvin–Voigt dissipating mechanisms
Autor: | Victor H. Gonzalez Martinez, Marcelo M. Cavalcanti |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Asymptotic Analysis. 128:273-293 |
ISSN: | 1875-8576 0921-7134 |
DOI: | 10.3233/asy-211706 |
Popis: | In the present paper, we are concerned with the semilinear viscoelastic wave equation in an inhomogeneous medium Ω subject to two localized dampings. The first one is of the type viscoelastic and is distributed around a neighborhood ω of the boundary according to the Geometric Control Condition. The second one is a frictional damping and we consider it hurting the geometric condition of control. We show that the energy of the wave equation goes uniformly and exponentially to zero for all initial data of finite energy taken in bounded sets of finite energy phase-space. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |