Application of artificial neural networks for the prediction of sulfur polycyclic aromatic compounds retention indices
Autor: | Anatoly Dimoglo, Hatice Can, Vasyl Kovalishyn |
---|---|
Rok vydání: | 2005 |
Předmět: | |
Zdroj: | Journal of Molecular Structure: THEOCHEM. 723:183-188 |
ISSN: | 0166-1280 |
DOI: | 10.1016/j.theochem.2005.03.004 |
Popis: | Quantitative models for structure–retention relationships have been developed for the retention indices of polycyclic aromatic sulfur heterocyclic compounds (PASHs). Six nonlinear models for predicting linear temperature programmed gas chromatographic retention characteristics on a Bpx5 (%5 phenyl) stationary phase. The developed predictive models relate molecular structure of each PASH compound to its experimental retention index. |
Databáze: | OpenAIRE |
Externí odkaz: |