An Inverse Coefficient Problem for an Integro-differential Equation
Autor: | Thomas S. Shores, A. M. Denisov |
---|---|
Rok vydání: | 2002 |
Předmět: | |
Zdroj: | Applicable Analysis. 81:725-752 |
ISSN: | 1563-504X 0003-6811 |
DOI: | 10.1080/0003681021000004393 |
Popis: | In this article we consider the inverse coefficient problem of recovering the function { ( x ) system of partial differential equations that can be reduced to a second order integro-differential equation $ -u_{xx} + c(x)u_{x} + d\phi (x)u-\gamma d\phi (x)\int _{0}^{t}e^{-\gamma (t-\tau )}u(x,\tau )\, d\tau = 0 $ with boundary conditions. We prove the existence and uniqueness of solutions to the inverse problem and develop a numerical algorithm for solving this problem. Computational results for some examples are presented. |
Databáze: | OpenAIRE |
Externí odkaz: |