Sequence selection properties in Cp (X) with the double ideals
Autor: | B. K. Tyagi, Sumit Singh, Manoj Bhardwaj |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Mathematica Slovaca. 71:147-154 |
ISSN: | 1337-2211 0139-9918 |
DOI: | 10.1515/ms-2017-0458 |
Popis: | Recently Bukovský, Das and Šupina [Ideal quasi-normal convergence and related notions, Colloq. Math. 146 (2017), 265–281] started the study of sequence selection properties (𝓘, 𝓙-α 1) and (𝓘, 𝓙-α 4) of Cp (X) using the double ideals, where 𝓘 and 𝓙 are the proper admissible ideals of ω, which are motivated by Arkhangeľskii local αi -properties [The frequency spectrum of a topological space and the classification of spaces, Dokl. Akad. Nauk SSSR 13 (1972), 1185–1189]. In this paper, we obtain some characterizations of (𝓘, 𝓙-α 1) and (𝓘, 𝓙-α 4) properties of Cp (X) in the terms of covering properties and selection principles. Under certain conditions on ideals 𝓘 and 𝓙, we identify the minimal cardinalities of a space X for which Cp (X) does not have (𝓘, 𝓙-α 1) and (𝓘, 𝓙-α 4) properties. |
Databáze: | OpenAIRE |
Externí odkaz: |