Infinitely many solutions for a class of elliptic problems involving the fractional Laplacian

Autor: Ying-Xin Cui, Liang-Liang Sun, Massimiliano Ferrara, Bin Ge, Ting-Ting Zhao
Rok vydání: 2018
Předmět:
Zdroj: Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas. 113:657-673
ISSN: 1579-1505
1578-7303
DOI: 10.1007/s13398-018-0498-8
Popis: In this paper, we study the existence of nontrivial solution to a quasi-linear problem $$\begin{aligned} (-\Delta )_{p}^{s} u+ V(x)|u|^{p-2}u=Q(x)f(x,u),\quad x\in {\mathbb {R}}^{N}, \end{aligned}$$ where $$\begin{aligned} (-\Delta )_{p}^{s} u(x)=2\lim \limits _{\epsilon \rightarrow 0}\int _{{\mathbb {R}}^N \backslash B_{\varepsilon }(x)} \frac{|u(x)-u(y)|^{p-2} (u(x)-u(y))}{| x-y | ^{N+sp}}dy,\quad x\in {\mathbb {R}}^N \end{aligned}$$ is a nonlocal and nonlinear operator and $$ p\in (1,\infty )$$ , $$ s \in (0,1) $$ . We study two cases: if f(x, u) is sublinear, then we get infinitely many solutions for (P) by Clark’s theorem; if f(x, u) is superlinear, we obtain infinitely many solutions of the problem (P) by symmetric mountain pass theorem.
Databáze: OpenAIRE