Popis: |
The aim of this study was to determine the effect of various biomass ashes, comprising catalytically active components, on tire char reactivity during the CO2 gasification process. Ashes from the combustion of corn cobs, beet pulp, sunflower husks and beech chips were selected for the research. Moreover, industrial fly ash from a coal-fired power plant was used as a reference. The tire char-ash blends with different ash contents (0–15 wt%) were gasified in the CO2 atmosphere under non-isothermal conditions using dynTHERM Rubotherm thermobalance. Based on the n-order Coats and Redfern method, gasification reactivity indicators and kinetics parameters were calculated. The results showed that the addition of biomass ashes enhanced reactivity of tire char, and the magnitude of these changes depended on both the quantity and type of the additive. With the increase in the amount of added biomass ashes, the catalytic effect increased, and their efficiency can be ranked as follows: sunflower husk ash > corn cobs ash ≅ beet pulp ash > beech chips ash. In turn, reference fly ash from a power plant slightly affected the CO2 gasification of tire char, regardless of its amount. Moreover, a statistically significant correlation between the reactivity indicator and the amount of K2O, MgO and P2O5 in ashes analysed has been proved (reactivity indicator improved with an increase in these components amount). The performed analysis provides valuable information regarding the composition of catalysts characterised by high catalytic activity in the tire char gasification process. |