Asymptotic expansions related to hyperfactorial function and Glaisher–Kinkelin constant
Autor: | Hongmei Liu, Weiping Wang |
---|---|
Rok vydání: | 2016 |
Předmět: |
Asymptotic analysis
Series (mathematics) Applied Mathematics 010102 general mathematics Mathematical analysis Euler–Maclaurin formula 01 natural sciences Method of matched asymptotic expansions Bell polynomials 010101 applied mathematics Computational Mathematics symbols.namesake symbols Glaisher–Kinkelin constant 0101 mathematics Bernoulli number Mathematics Taylor expansions for the moments of functions of random variables |
Zdroj: | Applied Mathematics and Computation. 283:153-162 |
ISSN: | 0096-3003 |
DOI: | 10.1016/j.amc.2016.02.027 |
Popis: | In this paper, by the Bernoulli numbers and the exponential complete Bell polynomials, we establish two general asymptotic expansions related to the hyperfactorial function and the Glaisher-Kinkelin constant, where the coefficients in the series of the expansions can be determined by recurrences. Moreover, the explicit expressions of the coefficients are studied and some special asymptotic expansions are presented. |
Databáze: | OpenAIRE |
Externí odkaz: |