Equivariant fixed point index and fixed point transfer in nonzero dimensions
Autor: | Carlos Prieto, Hanno Ulrich |
---|---|
Rok vydání: | 1991 |
Předmět: |
Discrete mathematics
Pure mathematics Trace (linear algebra) Applied Mathematics General Mathematics Fixed-point index Fixed point Fixed-point property Mathematics::Algebraic Topology Trivial group Transfer (group theory) Dimension (vector space) Mathematics::K-Theory and Homology Equivariant map Mathematics |
Zdroj: | Transactions of the American Mathematical Society. 328:731-745 |
ISSN: | 1088-6850 0002-9947 |
DOI: | 10.1090/s0002-9947-1991-1062875-4 |
Popis: | Dold’s fixed point index and fixed point transfer are generalized for certain coincidence situations, namely maps which change the "equivariant dimension." Those invariants change the dimension correspondingly. A formula for the index of a situation over a space with trivial group action is exhibited. For the transfer, a generalization of Dold’s Lefschetz-Hopf trace formula is proved. |
Databáze: | OpenAIRE |
Externí odkaz: |