The Summability Significance of Roots of Bessel Functions
Autor: | E C Obi |
---|---|
Rok vydání: | 1986 |
Předmět: | |
Zdroj: | SIAM Journal on Mathematical Analysis. 17:1489-1494 |
ISSN: | 1095-7154 0036-1410 |
DOI: | 10.1137/0517107 |
Popis: | A new semicontinuous Toeplitz (regular) matrix method of summability is developed from the (roots of) Bessel functions. Like the method of the Bessel function itself, developed by R. G. Cooke, viz., $(j.v):a_{\lambda k} = 2J_{k + \nu }^2 (\lambda ),$ the new method, $(\mathcal{O},m):t_{\nu k}^{(m)} = \beta (m,\nu )j_{\nu k}^{ - 2m} $ (where $\beta (m,\nu )$ is explicit in m, $\nu $ ), falls into the “Cesaro scope,” but unlike the Cooke method, the $(\mathcal{O},m)$ limitation methods are definitely consistent with $(C,1)$ throughout the convergence field of this Cesaro means. |
Databáze: | OpenAIRE |
Externí odkaz: |