The Summability Significance of Roots of Bessel Functions

Autor: E C Obi
Rok vydání: 1986
Předmět:
Zdroj: SIAM Journal on Mathematical Analysis. 17:1489-1494
ISSN: 1095-7154
0036-1410
DOI: 10.1137/0517107
Popis: A new semicontinuous Toeplitz (regular) matrix method of summability is developed from the (roots of) Bessel functions. Like the method of the Bessel function itself, developed by R. G. Cooke, viz., $(j.v):a_{\lambda k} = 2J_{k + \nu }^2 (\lambda ),$ the new method, $(\mathcal{O},m):t_{\nu k}^{(m)} = \beta (m,\nu )j_{\nu k}^{ - 2m} $ (where $\beta (m,\nu )$ is explicit in m, $\nu $ ), falls into the “Cesaro scope,” but unlike the Cooke method, the $(\mathcal{O},m)$ limitation methods are definitely consistent with $(C,1)$ throughout the convergence field of this Cesaro means.
Databáze: OpenAIRE