Exact boundary behavior of positive large solutions of a nonlinear Dirichlet problem

Autor: Sonia Ben Othman, Bilel Khamessi
Rok vydání: 2019
Předmět:
Zdroj: Nonlinear Analysis. 187:307-319
ISSN: 0362-546X
DOI: 10.1016/j.na.2019.05.001
Popis: In this paper, we investigate the exact asymptotic behavior of positive solution to the following singular boundary value problem Δ u = b ( x ) f ( u ) , x ∈ Ω , u > 0 in Ω , u | ∂ Ω = + ∞ , where Ω is a C 2 -bounded domain in R N , ( N ≥ 3 ), f ∈ C 1 ( ( 0 , ∞ ) , ( 0 , ∞ ) ) is nondecreasing on ( 0 , ∞ ) and b is a function in C l o c γ ( Ω ) , ( 0 γ 1 ) such that there exist b 1 , b 2 > 0 satisfying for each x ∈ Ω , 0 b 1 = lim d ( x ) ⟶ 0 inf b ( x ) h ( d ( x ) ) ≤ lim d ( x ) ⟶ 0 sup b ( x ) h ( d ( x ) ) = b 2 ∞ , where d ( x ) = d i s t ( x , ∂ Ω ) and h ( t ) ≔ c t − λ exp ∫ t η z ( s ) s d s , η > d i a m ( Ω ) , λ ≤ 2 such that z is a continuous function on [ 0 , η ] with z ( 0 ) = 0 .
Databáze: OpenAIRE