Characterizing and calibrating a large Helmholtz coil at low ac magnetic field levels with peak magnitudes below the earth’s magnetic field
Autor: | Karin V. Hoff, Robert A. Schill |
---|---|
Rok vydání: | 2001 |
Předmět: | |
Zdroj: | Review of Scientific Instruments. 72:2769-2776 |
ISSN: | 1089-7623 0034-6748 |
DOI: | 10.1063/1.1368853 |
Popis: | Characterizing and calibrating a low impedance large Helmholtz coil generating 60 Hz magnetic fields with amplitudes well below the earth’s magnetic field is difficult and imprecise when coil shielding is not available and noise is an issue. Parameters influencing the calibration process such as temperature and coil impedance need to be figured in the calibration process. A simple and reliable calibration technique is developed and used to measure low amplitude fields over a spatial grid using a standard Hall effect probe gaussmeter. These low amplitude fields are typically hard or impossible to detect in the presence of background fields when using the gaussmeter in the conventional manner. Standard deviations of two milligauss and less have been achieved over a spatial grid in a uniform field region. Theoretical and measured fields are compared yielding reasonable agreement for a large coil system designed and built for bioelectromagnetic experiments at the University of Nevada at Las Vegas using simple tools. Theoretical results need to be compared with and adjusted in accord with measurements taken over a large parameter space within the design constraints of the coil. Magnetic field measurements made over a four year period are shown to be consistent. Characterizing and calibrating large Helmholtz coils can be performed with rulers, levels, plumb lines, and inexpensive gaussmeters. |
Databáze: | OpenAIRE |
Externí odkaz: |