Structure of Binary Darboux-Type Transformations for Hermitian Adjoint Differential Operators
Autor: | A. K. Prykarpats’kyi, V. H. Samoilenko |
---|---|
Rok vydání: | 2004 |
Předmět: |
Pure mathematics
Constant coefficients General Mathematics Mathematical analysis Hilbert space Spectral theorem Operator theory Differential operator Fourier integral operator symbols.namesake Nonlinear Sciences::Exactly Solvable and Integrable Systems Hermitian adjoint symbols Operator norm Mathematics |
Zdroj: | Ukrainian Mathematical Journal. 56:336-341 |
ISSN: | 0041-5995 |
DOI: | 10.1023/b:ukma.0000036107.23520.fc |
Popis: | For Hermitian adjoint differential operators, we consider the structure of Darboux–Backlund-type transformations in the class of parametrically dependent Hilbert spaces. By using the proposed new method, we obtain the corresponding integro-differential symbols of the operators of transformations in explicit form and consider the problem of their application to the construction of two-dimensional Lax-integrable nonlinear evolution equations and their Darboux–Backlund-type transformations. |
Databáze: | OpenAIRE |
Externí odkaz: |