Richardson extrapolation based on superconvergent Nyström and degenerate kernel methods
Autor: | M. Tahrichi, D. Sbibih, C. Allouch |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | Afrika Matematika. 30:469-482 |
ISSN: | 2190-7668 1012-9405 |
DOI: | 10.1007/s13370-019-00660-9 |
Popis: | For computing the approximated solution of a second kind integral equation with a smooth kernel, we investigate in this paper the Richardson extrapolation using superconvergent Nystrom and degenerate kernel methods based on interpolatory projection onto the space of (discontinuous) piecewise polynomials of degree $$\le r - 1.$$ We obtain asymptotic series expansions for the approximate solutions and we show that the order of convergence 4r in the interpolation at Gauss points can be improved to $$4r+2$$ . We illustrate the improvement of the order of convergence by numerical experiments. |
Databáze: | OpenAIRE |
Externí odkaz: |