Richardson extrapolation based on superconvergent Nyström and degenerate kernel methods

Autor: M. Tahrichi, D. Sbibih, C. Allouch
Rok vydání: 2019
Předmět:
Zdroj: Afrika Matematika. 30:469-482
ISSN: 2190-7668
1012-9405
DOI: 10.1007/s13370-019-00660-9
Popis: For computing the approximated solution of a second kind integral equation with a smooth kernel, we investigate in this paper the Richardson extrapolation using superconvergent Nystrom and degenerate kernel methods based on interpolatory projection onto the space of (discontinuous) piecewise polynomials of degree $$\le r - 1.$$ We obtain asymptotic series expansions for the approximate solutions and we show that the order of convergence 4r in the interpolation at Gauss points can be improved to $$4r+2$$ . We illustrate the improvement of the order of convergence by numerical experiments.
Databáze: OpenAIRE