Toehold Length of Target ssDNA Affects Its Reaction-Diffusion Behavior in DNA-Responsive DNA-co-Acrylamide Hydrogels
Autor: | Astrid Bjørkøy, Eleonóra Parelius Jonášová, Bjørn T. Stokke |
---|---|
Rok vydání: | 2019 |
Předmět: |
Polymers and Plastics
Diffusion Bioengineering 02 engineering and technology 010402 general chemistry 021001 nanoscience & nanotechnology 01 natural sciences 0104 chemical sciences Biomaterials chemistry.chemical_compound chemistry Acrylamide Reaction–diffusion system Self-healing hydrogels Materials Chemistry Confocal laser scanning microscopy medicine Biophysics Single displacement reaction Swelling medicine.symptom 0210 nano-technology DNA |
Zdroj: | Biomacromolecules. 21:1687-1699 |
ISSN: | 1526-4602 1525-7797 |
Popis: | In the present study, we expand on the understanding of hydrogels with embedded deoxyribonucleic acid (DNA) cross-links, from the overall swelling to characterization of processes that precede the swelling. The hydrogels respond to target DNA strands because of a toehold-mediated strand displacement reaction in which the target strand binds to and opens the dsDNA cross-link. The spatiotemporal evolution of the diffusing target ssDNA was determined using confocal laser scanning microscopy (CLSM). The concentration profiles revealed diverse partitioning of the target DNA inside the hydrogel as compared with the immersing solution: excluding a nonbinding DNA, while accumulating a binding target. The data show that a longer toehold results in faster cross-link opening but reduced diffusion of the target, thus resulting in only a moderate increase in the overall swelling rate. The parameters obtained by fitting the data using a reaction-diffusion model were discussed in view of the molecular parameters of the target ssDNA and hydrogels. |
Databáze: | OpenAIRE |
Externí odkaz: |