Finite Type Modules and Bethe Ansatz for Quantum Toroidal $${\mathfrak{gl}_1}$$ gl 1
Autor: | E. Mukhin, Michio Jimbo, Boris Feigin, Tetsuji Miwa |
---|---|
Rok vydání: | 2017 |
Předmět: |
Physics
Pure mathematics 010102 general mathematics Subalgebra Statistical and Nonlinear Physics Type (model theory) 01 natural sciences Bethe ansatz Fock space Transfer (group theory) Tensor product 0103 physical sciences Vertex model 010307 mathematical physics 0101 mathematics Mathematical Physics Eigenvalues and eigenvectors |
Zdroj: | Communications in Mathematical Physics. 356:285-327 |
ISSN: | 1432-0916 0010-3616 |
DOI: | 10.1007/s00220-017-2984-9 |
Popis: | We study highest weight representations of the Borel subalgebra of the quantum toroidal $${\mathfrak{gl}_1}$$ algebra with finite-dimensional weight spaces. In particular, we develop the q-character theory for such modules. We introduce and study the subcategory of ‘finite type’ modules. By definition, a module over the Borel subalgebra is finite type if the Cartan like current $${\psi^+(z)}$$ has a finite number of eigenvalues, even though the module itself can be infinite dimensional. We use our results to diagonalize the transfer matrix T V,W (u; p) analogous to those of the six vertex model. In our setting T V,W (u; p) acts in a tensor product W of Fock spaces and V is a highest weight module over the Borel subalgebra of quantum toroidal $${\mathfrak{gl}_1}$$ with finite-dimensional weight spaces. Namely we show that for a special choice of finite type modules V the corresponding transfer matrices, Q(u; p) and $${\mathcal{T}(u;p)}$$ , are polynomials in u and satisfy a two-term TQ relation. We use this relation to prove the Bethe Ansatz equation for the zeroes of the eigenvalues of Q(u; p). Then we show that the eigenvalues of T V,W (u; p) are given by an appropriate substitution of eigenvalues of Q(u; p) into the q-character of V. |
Databáze: | OpenAIRE |
Externí odkaz: |