Approximation in Smirnov classes with variable exponent

Autor: Daniyal M. Israfilov, Ahmet Testici
Rok vydání: 2015
Předmět:
Zdroj: Complex Variables and Elliptic Equations. 60:1243-1253
ISSN: 1747-6941
1747-6933
DOI: 10.1080/17476933.2015.1004539
Popis: In this work, the inverse problem of approximation theory in the variable exponent Smirnov classes of analytic functions, defined on the Jordan domains with a Dini-smooth boundaries, is studied. First, for this purpose, an inverse theorem in the variable exponent Lebesgue spaces of periodic functions is obtained. Later, using the special linear operators, this inverse theorem to the variable exponent Smirnov classes of analytic functions is moved.
Databáze: OpenAIRE