Neumann problem with the integro-differential operator in the boundary condition
Autor: | A. O. Danyliuk, I. M. Danyliuk |
---|---|
Rok vydání: | 2016 |
Předmět: |
General Mathematics
010102 general mathematics Mathematical analysis Mathematics::Analysis of PDEs Mixed boundary condition 01 natural sciences Elliptic boundary value problem Poincaré–Steklov operator Neumann series 010101 applied mathematics Semi-elliptic operator Von Neumann's theorem Neumann boundary condition Boundary value problem 0101 mathematics Mathematics |
Zdroj: | Mathematical Notes. 100:687-694 |
ISSN: | 1573-8876 0001-4346 |
DOI: | 10.1134/s0001434616110055 |
Popis: | The Neumann problem for a second-order parabolic equation with integro-differential operator in the boundary condition is considered. A well-posedness theorem is proved, in particular, the integral representation of the solution is obtained, estimates for the derivatives of the solution are established, and the kernel of the inverse operator of the problem is explicitly expressed. |
Databáze: | OpenAIRE |
Externí odkaz: |