Autor: |
Luerbio Faria, Sylvain Gravier, Celina M. H. de Figueiredo, Jorge Stolfi, Candido F. X. de Mendonça |
Rok vydání: |
2004 |
Předmět: |
|
Zdroj: |
Electronic Notes in Discrete Mathematics. 18:121-126 |
ISSN: |
1571-0653 |
DOI: |
10.1016/j.endm.2004.06.019 |
Popis: |
The non planar vertex deletion v d ( G ) , of a graph G is the smallest positive integer k, such that the removal of k vertices from G produces a planar graph. We solve a problem proposed by Yannakakis: find the threshold for the maximum degree of a graph G such that, given a graph G and a positive integer k, to decide whether v d ( G ) ≤ k is NP-complete. We prove that it is NP-complete to decide whether a maximum degree 3 graph G and a positive integer k satisfy v d ( G ) ≤ k . We prove that to compute v d ( G ) is Max SNP-hard when restricted to a cubic input G. We exhibit a polynomial 3 4 -approximation algorithm for finding a maximum planar induced subgraph of a maximum degree 3 graph. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|