The Witten deformation of the Dolbeault complex

Autor: Peter B. Gilkey, J.A. Álvarez López
Rok vydání: 2021
Předmět:
Zdroj: Journal of Geometry. 112
ISSN: 1420-8997
0047-2468
Popis: We introduce a Witten–Novikov type perturbation $$\bar{\partial }_{\bar{\omega }}$$ of the Dolbeault complex of any complex Kahler manifold, defined by a form $$\omega $$ of type (1, 0) with $$\partial \omega =0$$ . We give an explicit description of the associated index density which shows that it exhibits a nontrivial dependence on $$\omega $$ . The heat invariants of lower order are shown to be zero.
Databáze: OpenAIRE