Mechanism of hydrogen peroxide production in porcine thyroid cells: evidence for intermediary formation of superoxide anion by NADPH-dependent hydrogen peroxide-generating machinery
Autor: | Yuzuru Ishimura, Yoichi Nakamura, Torahiko Tanaka, Ryu Makino, Sachiya Ohtaki |
---|---|
Rok vydání: | 1991 |
Předmět: | |
Zdroj: | Biochemistry. 30:4880-4886 |
ISSN: | 1520-4995 0006-2960 |
DOI: | 10.1021/bi00234a007 |
Popis: | Hydrogen peroxide (H2O2), which is required for thyroid hormone synthesis, has been believed to be produced at the apical cell surface of thyroid follicular cells. However, we recently found that plasma membrane from porcine thyroid exclusively generated superoxide anion (O2-) by employing a novel method for simultaneous determination of H2O2 and O2- with diacetyldeuterioheme-substituted horseradish peroxidase (diacetyl-HRP) as the trapping reagent [Nakamura, Y., Ohtaki, S., Makino, R., Tanaka, T., & Ishimura, Y. (1989) J. Biol. Chem. 264, 4759-4761]. The present study describes the mechanism of H2O2 production as analyzed by this new method. Incubation of cultured porcine follicular cells with ionomycin, a Ca-ionophore, caused an increase in oxygen uptake of about 80%. During enhanced respiration, the cells released H2O2 in an amount equivalent to the amount of oxygen consumed as judged by the formation of compound II of diacetyl-HRP, and H2O2 adduct of the peroxidase. No formation of compound III of the peroxidase, an O2- adduct, was detected during burst respiration. Thus, the intact cells exclusively released H2O2 to the outside of the cells. On the other hand, when the cell fragments from follicular cells were incubated with NADPH or NADH in the presence of Ca2+, the production of O2- was observed only during NADPH-dependent burst respiration, supporting our previous results that the plasma membrane exhibited NADPH-dependent O2(-)-generating activity. O2- production by the plasma membrane was further confirmed by analyses of the effects of superoxide dismutase (SOD) and catalase on the reaction. These results suggested that H2O2 is secondarily produced through the dismutation of O2-.(ABSTRACT TRUNCATED AT 250 WORDS) |
Databáze: | OpenAIRE |
Externí odkaz: |