Asymptotics of the number of repetition-free Boolean functions in the elementary basis

Autor: O. V. Zubkov
Rok vydání: 2007
Předmět:
Zdroj: Mathematical Notes. 82:741-747
ISSN: 1573-8876
0001-4346
DOI: 10.1134/s0001434607110181
Popis: In this paper, we obtain an asymptotic approximation of the number K n of repetition-free Boolean functions of n variables in the elementary basis {&, ∨, −} as n → ∞ with relative error O(1/√n). As a consequence, we verify conjectures on the existence of constants δ and α such that $$K_n \sim \delta \cdot \alpha ^{n - 1} \cdot (2n - 3)!!$$ , and obtain these constants.
Databáze: OpenAIRE