Asymptotics of the number of repetition-free Boolean functions in the elementary basis
Autor: | O. V. Zubkov |
---|---|
Rok vydání: | 2007 |
Předmět: | |
Zdroj: | Mathematical Notes. 82:741-747 |
ISSN: | 1573-8876 0001-4346 |
DOI: | 10.1134/s0001434607110181 |
Popis: | In this paper, we obtain an asymptotic approximation of the number K n of repetition-free Boolean functions of n variables in the elementary basis {&, ∨, −} as n → ∞ with relative error O(1/√n). As a consequence, we verify conjectures on the existence of constants δ and α such that $$K_n \sim \delta \cdot \alpha ^{n - 1} \cdot (2n - 3)!!$$ , and obtain these constants. |
Databáze: | OpenAIRE |
Externí odkaz: |