On the Number of Indecomposable Modular Representations of a Cyclic p- Group over a Local Ring of Finite Length

Autor: Alexander Tylyshchak
Rok vydání: 2021
Předmět:
Zdroj: Journal of Mathematical Sciences. 258:455-465
ISSN: 1573-8795
1072-3374
Popis: The series of indecomposable modular representations of a cyclic p -group a over a commutative local nonintegral ring of principal ideals of characteristic p is constructed in the form a → E + M , where E is the identity matrix and M is a monomial matrix. We establish a criterion for the equivalence of these representations and determine the number of nonequivalent indecomposable representations of a given form and fixed degree for the introduced relation of *-equivalence.
Databáze: OpenAIRE