On the Number of Indecomposable Modular Representations of a Cyclic p- Group over a Local Ring of Finite Length
Autor: | Alexander Tylyshchak |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Journal of Mathematical Sciences. 258:455-465 |
ISSN: | 1573-8795 1072-3374 |
Popis: | The series of indecomposable modular representations of a cyclic p -group a over a commutative local nonintegral ring of principal ideals of characteristic p is constructed in the form a → E + M , where E is the identity matrix and M is a monomial matrix. We establish a criterion for the equivalence of these representations and determine the number of nonequivalent indecomposable representations of a given form and fixed degree for the introduced relation of *-equivalence. |
Databáze: | OpenAIRE |
Externí odkaz: |