On the approximation of the concentration parameter for von Mises distribution
Autor: | Nor Hafizah Moslim, Yong Zulina Zubairi, Rossita M. Yunus, S. F. Hassan, Abdul Ghapor Hussin |
---|---|
Rok vydání: | 2017 |
Předmět: |
General Mathematics
media_common.quotation_subject 05 social sciences Mathematical analysis Concentration parameter General Physics and Astronomy General Chemistry General Biochemistry Genetics and Molecular Biology Normal distribution Distribution (mathematics) Goodness of fit Sample size determination 0502 economics and business von Mises distribution 050211 marketing General Agricultural and Biological Sciences Real line 050203 business & management Normality Mathematics media_common |
Zdroj: | Malaysian Journal of Fundamental and Applied Sciences. 13:390-393 |
ISSN: | 2289-599X 2289-5981 |
DOI: | 10.11113/mjfas.v13n4-1.807 |
Popis: | The von Mises distribution is the ‘natural’ analogue on the circle of the Normal distribution on the real line and is widely used to describe circular variables. The distribution has two parameters, namely mean direction, and concentration parameter, κ. Solutions to the parameters, however, cannot be derived in the closed form. Noting the relationship of the κ to the size of sample, we examine the asymptotic normal behavior of the parameter. The simulation study is carried out and Kolmogorov-Smirnov test is used to test the goodness of fit for three level of significance values. The study suggests that as sample size and concentration parameter increase, the percentage of samples follow the normality assumption increase. |
Databáze: | OpenAIRE |
Externí odkaz: |