A novel solution methodology for longitudinal flight characterization of a Flying-Wing Micro Aerial Vehicle
Autor: | Taimur Ali Shams, Syed Irtiza Ali Shah, Aamer Shahzad, Muzaffar Habib, Farhat Asim, Mohtashim Mansoor |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering. 236:3201-3219 |
ISSN: | 2041-3025 0954-4100 |
DOI: | 10.1177/09544100221081845 |
Popis: | A longitudinal flight dynamic study of a low mass moment of inertia vehicle is presented. Aerodynamic and stability derivatives of a flying-wing microaerial vehicle (FWMAV) were obtained through detailed subsonic wind tunnel tests at a Reynolds Number of 1.87 × 105. Rate and acceleration derivatives were obtained using the potential flow solver, Tornado®. A novel methodology for the estimation of dimensional derivatives is proposed, and results are compared with the conventional linear time-invariant systems (LTI) approach. Free response for natural frequency, damping coefficient, and time constant as well as forced response upon a unit step and a unit impulse elevon input has been calculated and analyzed. The proposed methodology predicted two pairs of complex conjugates for the longitudinal flight up to a pitch angle of 89° whereas the conventional methodology predicted the same up to 57°. Longitudinal modes sensitivity in terms of stability with the variation of mass, velocity, and pitch angle has also been analyzed. The flying-wing microaerial vehicle was able to sustain straight and level flight during flight trials; however, higher frequencies of phugoid and short period modes were observed. These high frequencies were the consequence of large magnitude of [Formula: see text] (ratio of Z-force derivative with the angle of attack and cruise velocity) and [Formula: see text] (ratio of Z-force derivative with the axial velocity and cruise velocity). It is concluded that the proposed methodology presented a more realistic representation of longitudinal flight modes since classical flight modes are captured till 89° which conventional LTI methodology failed to do so. |
Databáze: | OpenAIRE |
Externí odkaz: |