Radial basis interpolation on homogeneous manifolds: convergence rates
Autor: | Jeremy Levesley, David L. Ragozin |
---|---|
Rok vydání: | 2007 |
Předmět: | |
Zdroj: | Advances in Computational Mathematics. 27:237-246 |
ISSN: | 1572-9044 1019-7168 |
DOI: | 10.1007/s10444-005-9000-1 |
Popis: | Pointwise error estimates for approximation on compact homogeneous manifolds using radial kernels are presented. For a \({\mathcal C}^{2r}\) positive definite kernel κ the pointwise error at x for interpolation by translates of κ goes to 0 like ρr, where ρ is the density of the interpolating set on a fixed neighbourhood of x. Tangent space techniques are used to lift the problem from the manifold to Euclidean space, where methods for proving such error estimates are well established. |
Databáze: | OpenAIRE |
Externí odkaz: |