An efficient character recognition method using enhanced HOG for spam image detection

Autor: Fatemeh Naiemi, Vahid Ghods, Hassan Khalesi
Rok vydání: 2019
Předmět:
Zdroj: Soft Computing. 23:11759-11774
ISSN: 1433-7479
1432-7643
Popis: Generally, a spam image is an unsolicited message electronically sent to a wide group of arbitrary addresses. Due to attractiveness and more difficult detection, spam images are the most complicated type of spam. One of the ways to encounter the spam images is an optical character recognition, OCR, method. In this paper, the proposed enhanced HOG feature extraction method has been used so that the optical character recognition system of spam has been enhanced by using the HOG feature extraction method in such a way to be both resistant against the character variations on scale and translation and to be computationally cost-effective. For these purposes, two steps of the cropped image and input image size normalization have been added to pre-processing stages. Support vector machine, SVM, was employed for classification. Two heuristic modifications including thickening of the thin characters in the pre-processing stage and non-discrimination in detecting the uppercase and lowercase letters with the same shapes in the classification stage have been also proposed to increase the system recognition accuracy. In the first heuristic modification, when all pixels of the output image are empty (the character is eliminated), the original image was made thicker by one layer. In the second modification, when recognizing the letters, no differentiation was considered between the uppercase and lowercase letters with the same shapes. An average recognition accuracy of the modified HOG method with two heuristic modifications equals 91.61% on Char74K database. Then, an optimum threshold for classification was investigated by ROC curve. The optimal cutoff point was 0.736 with the highest average accuracy, 94.20%, and AUC, area under curve, for ROC and precision–recall, PR, curves were 0.96 and 0.73, respectively. The proposed method was also examined on ICDAR2003 database, and the average accuracy and its optimum using ROC curve were 82.73% and 86.01%, respectively. These results of recognition accuracy and AUC for ROC and PR curve showed an outstanding enhancement in comparison with the best recognition rate of the previous methods.
Databáze: OpenAIRE